Article Page

Abstract

Proton transport plays an important role in biological energy transduction and sensory systems. Therefore it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic and quantum descriptions, assisted with the evolution, formation and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free energy functional to put proton kinetic and potential energies, the free energy of all other ions, the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet to Neumann mapping (DNM), matched interface and boundary (MIB) method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed Quantum model dynamics in continuum for proton transport II Variational solvent-solute interface computer-aided drug design Logical computations using algorithmic self-assembly of RGD-FHRRIKA-RARADADA-IKVAV responsive peptide-modified mimetic triple-crossover hydrothermochemic molecules for tissue regeneration.

Keywords

Quantum dynamics; continuum for proton transport II; Variational solvent-solute interface; computer-aided drug design;Logical computations; algorithmic self-assembly; RGD-FHRRIKA-RARADADA-IKVAV; responsive peptide-modified; mimetic; triple-crossover; hydrothermochemic molecules; tissue regeneration;Proton transport, Quantum dynamics in continuum, Multiscale model, Laplace-Beltrami equation, Poisson-Boltzmann equation, Kohn-Sham equation, Variational principle;

Article Type

Research Article - Abstract

Publication history

Received: Sep 20, 2017 Accepted: Sep 25, 2017 Published: Oct 01, 2017

Citation

Grigoriadis Ioannis, Grigoriadis George, Grigoriadis Nikolaos, George Galazios (2017) Quantum dynamics in continuum for proton transport II Variational solvent-solute interface computer-aided drug design Logical computations using algorithmic self-assembly of RGD-FHRRIKA-RARADADA-IKVAV responsive peptide-modified mimetic triple-crossover hydrothermochemic molecules for tissue regeneration.

Authors Info

Grigoriadis Nikolaos Department of IT Computer Aided Personalized Myoncotherapy, Cartigenea-Cardiogenea, Neurogenea-Cellgenea, Cordigenea-HyperoligandorolTM, Biogenea Pharmaceuticals Ltd, Thessaloniki, Greece;

Grigoriadis Ioannis Department of Computer Drug Discovery Science, BiogenetoligandorolTM, Biogenea Pharmaceuticals Ltd, Thessaloniki, Greece;

Grigoriadis George Department of Stem Cell Bank and ViroGeneaTM, Biogenea Pharmaceuticals Ltd, Thessaloniki, Greece;

George Galazios Professor of Obstetrics and Gynecology, Democritus University of Thrace, Komotini, Greece;

E-mail: biogeneadrug@gmail.com