Abstract
Poor cellular delivery and low bioavailability of novel potent therapeutic molecules continue to remain the bottleneck of modern cancer and gene therapy. Cell-penetrating peptides have provided immense opportunities for the intracellular delivery of bioactive cargos and have led to the first exciting successes in experimental therapy of muscular dystrophies. The arsenal of tools for oligonucleotide delivery has dramatically expanded in the last decade enabling harnessing of cell-surface receptors for targeted delivery.A benchmark dataset, consisting of 3028 drugs assigned within nine categories, was constructed by collecting data from KEGG. These prediction rates are much higher than the 11.11% achieved by random guessResearch and Scientific Project. These promising results suggest that the proposed method can become a useful tool in identifying drug target groups. Here, in Biogenea Pharmaceuticals Ltd we discovered for the first time the GENEA-Delivernarex-3308. An In silico rationally designed of a potential Peptide-mimic pharmacologicchemorecored poly-chemo-structure as a possible future synthetic ligand for the delivery of gene constructs through for efficient internalization utilizing the BiogeneotligandorolTM and the HotLig: a molecular surface-directed approach to scoring protein-ligand interactions through a novel Prediction Methodology of drug target groups based on chemical-chemical similarities and chemical-chemical/protein connections.