Article Page

Abstract

Topological quantum computation is a promising technique to achieve large-scale, error-corrected computation. Quantum hardware is used to create a large, 3-dimensional lattice of entangled qubits while performing computation requires strategic measurement in accordance with a topological circuit specification. The specification is a geometric structure that defines encoded information and fault-tolerant operations. The compilation of a topological circuit is one important aspect of programming a quantum computer, another is the mapping of the topological circuit into the operations performed by the hardware. Each qubit has to be controlled, and measurement results are needed to propagate encoded quantum information from input to output. Anticancer peptides (ACPs) are polycationic amphiphiles capable of preferentially killing a widespectrum of cancer cells relative to non-cancerous cells. Their primary mode of action is aninteraction with the cell membrane and subsequent activation of lytic effects, however it remainscontroversial the exact mechanism responsible for this mode of action. It has in previous studies been shown that utilizing zeta potential analyses it was possible to demonstrate the interaction of a small anticancer peptide with membrane modelsystems and cancer cells. Electrostatic interactions have a pivotal role in the cell killing processand in contrast to the AMPs action cell death occurs without achieving full neutralization of themembrane charge. The advent of microarray technology has revolutionized the search for genes that are differentially expressed across a range of cell types or experimental conditions. Traditional clustering methods, such as hierarchical clustering, are often difficult to deploy effectively since genes rarely exhibit similar expression pattern across a wide range of conditions. Web-enabled service called GEMS (Gene Expression Mining Server) for biclustering microarray data where Users may upload expression data and specify a set of criteria.GEMS performs bicluster mining based on a Gibbs sampling paradigm. Here, in Biogenea we have for the first time discovered an In silico designed of an Anticancer Peptide SVS-1 multipharmacophore as a potential drug-like efficator in Preceding Membrane Neutralization by Mapping of Topological Quantum Circuits to a Physical Hardware multi-mimotopic algorithmic approach for biclustering analysis of expression data.

Keywords

Mapping; Topological; Quantum Circuits; Physical Hardware; In silico; Anticancer Peptide; SVS-1 multipharmacophore; drug-like; efficator; Preceding Membrane; Neutralization; algorithmic approach; biclustering analysis; expression data;

Article Type

Research Article - Abstract

Publication history

Received: Sep 20, 2017 Accepted: Sep 25, 2017 Published: Oct 01, 2017

Citation

Grigoriadis Ioannis, Grigoriadis George, Grigoriadis Nikolaos, George Galazios (2017) In silico designed of an Anticancer Peptide SVS-1 multipharmacophore as a potential drug-like efficator in Preceding Membrane Neutralization by Mapping of Topological Quantum Circuits to a Physical Hardware multi-mimotopic algorithmic approach for biclustering analysis of expression data.

Authors Info

Grigoriadis Nikolaos Department of IT Computer Aided Personalized Myoncotherapy, Cartigenea-Cardiogenea, Neurogenea-Cellgenea, Cordigenea-HyperoligandorolTM, Biogenea Pharmaceuticals Ltd, Thessaloniki, Greece;

Grigoriadis Ioannis Department of Computer Drug Discovery Science, BiogenetoligandorolTM, Biogenea Pharmaceuticals Ltd, Thessaloniki, Greece;

Grigoriadis George Department of Stem Cell Bank and ViroGeneaTM, Biogenea Pharmaceuticals Ltd, Thessaloniki, Greece;

George Galazios Professor of Obstetrics and Gynecology, Democritus University of Thrace, Komotini, Greece;

E-mail: biogeneadrug@gmail.com