Article Page

Abstract

Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.Control aspects of quantum computing using pure and mixed states Control aspects of quantum computing using pure and mixed states A Computer-aided rational approach for the in silico generation of a TCR Peptide Mimetic Pharmacoligand as a potential chemo-modulator in Human Autoimmune Diseases.Inflammatory Th1 cells reacting to tissue/myelin derived antigens likely contribute to the pathogenesis of diseases such as multiple sclerosis (MS), rheumatoid arthritis (RA), and psoriasis. One regulatory mechanism that may be useful for treating autoimmune diseases involves an innate second set of Th2 cells specific for portions of the T cell receptor of clonally expanded pathogenic Th1 cells. These Th2 cells are programmed to respond to internally modified V region peptides from the T cell receptor (TCR) that are expressed on the Th1 cell surface in association with major histocompatibility molecules. TB Mobile can now manage a small collection of compounds that can be imported from external sources, or exported by various means such as email or app-to-app inter-process communication. This means that TB Mobile can be used as a node within a growing ecosystem of mobile apps for cheminformatics. It can also cluster compounds and use internal algorithms to help identify potential targets based on quantum computing pure and mixed states of a Computer-aided rational approach for the in silico generation of a TCR Peptide Mimetic Pharmacoligand as a potential chemo-modulator in Human Autoimmune Diseases.

Keywords

Control aspects of quantum computing; pure and mixed states; Computer-aided rational approach; in silico; TCR Peptide; Mimetic Pharmacoligand; chemo-modulator; Human Autoimmune Diseases, optimal quantum control, quantum computing, unitary gate design, knot theory, Jones polynomial.

Article Type

Research Article - Abstract

Publication history

Received: Sep 20, 2017 Accepted: Sep 25, 2017 Published: Oct 01, 2017

Citation

Grigoriadis Ioannis, Grigoriadis George, Grigoriadis Nikolaos, George Galazios (2017) Control aspects of quantum computing using pure and mixed states of a Computer-aided rational approach for the in silico generation of a TCR Peptide Mimetic Pharmacoligand as a potential chemo-modulator in Human Autoimmune Diseases.

Authors Info

Grigoriadis Nikolaos Department of IT Computer Aided Personalized Myoncotherapy, Cartigenea-Cardiogenea, Neurogenea-Cellgenea, Cordigenea-HyperoligandorolTM, Biogenea Pharmaceuticals Ltd, Thessaloniki, Greece;

Grigoriadis Ioannis Department of Computer Drug Discovery Science, BiogenetoligandorolTM, Biogenea Pharmaceuticals Ltd, Thessaloniki, Greece;

Grigoriadis George Department of Stem Cell Bank and ViroGeneaTM, Biogenea Pharmaceuticals Ltd, Thessaloniki, Greece;

George Galazios Professor of Obstetrics and Gynecology, Democritus University of Thrace, Komotini, Greece;

E-mail: biogeneadrug@gmail.com